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Abstract Machine learning’s integration into health-
care has significantly advanced our ability to analyze
and predict complex datasets. However, challenges re-
main in efficiently processing and predicting health out-
comes from sparse and heterogeneous patient records.
This study aims to address these challenges by eval-
uating three different machine learning methods: XG-
Boost with a tabular dataset, LSTM with a time series
dataset, and a hybrid XGBoost then LSTM method.
We utilize a synthetic COVID-19 patient dataset to
assess the performance of these methods. Our results
indicate that the XGBoost model achieves the high-
est F1 score (0.5199) with the shortest training time
(151.42 seconds), demonstrating its efficiency and ef-
fectiveness. The LSTM model, despite capturing tem-
poral dependencies, shows a significantly lower F1 score
(0.2781) and the longest training time (approximately
8.66 days), highlighting its computational inefficiency
and overfitting issues. The hybrid method improves over
the standalone LSTM model but still falls short of XG-
Boost’s performance in both accuracy and computa-
tional efficiency. These findings underscore the poten-
tial of using 2D models like XGBoost to effectively re-
place more complex 3D models, potentially leading to
broader application and faster implementation in clin-
ical settings, thereby enhancing the ability to provide
timely and accurate patient care.
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LSTM - hybrid models - temporal data - predictive
modeling - patient records - COVID-19 - computational
efficiency

1 Introduction

Machine learning’s integration into healthcare has sig-
nificantly advanced our ability to analyze and predict
complex datasets [24]. Despite these advancements, chal-
lenges remain, particularly in efficiently processing and
predicting health outcomes from sparse patient records [4].
Traditionally, healthcare applications have faced signif-
icant challenges in managing heterogeneous and tempo-
rally irregular longitudinal data, leading to substantial
computational demands and the loss of critical tempo-
ral information [10]. Temporal information, which cap-
tures changes over time like the progression of a pa-
tient’s symptoms or responses to treatment, is crucial
for understanding disease trajectories and making in-
formed medical decisions.

In the context of predicting health outcomes from
patient records, a major challenge is efficiently utiliz-
ing longitudinal data formats, which incorporate time
as a dimension [I6]. These features can include a va-
riety of patient information such as demographic de-
tails, medical history, and lab test results, providing a
comprehensive snapshot of each patient’s health profile.
In contrast, data in healthcare typically involves time.
For example, the progression of a patient’s symptoms
over time can provide crucial insights into the trajec-
tory of an illness and help forecast potential complica-
tions or recovery timelines, which might include times-
tamped entries of symptom severity, medication doses,
and physiological measurements like blood pressure or
glucose levels [23]. In this research, three-dimensional
data refers to the complex interplay of multiple pa-
tients, various timestamps, and diverse features, creat-
ing a multidimensional matrix where each element rep-
resents a unique profile that varies over time and across
different patient profiles. This structure allows for the
analysis of temporal dynamics critical for understand-
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ing health trajectories and predicting outcomes. This
complexity not only increases the difficulty of analysis
but also prolongs the time required for training predic-
tive models.

The utilization of deep learning has made significant
advancements in managing these complexities. For in-
stance, (a) recurrent neural networks (RNNs) to im-
prove the detection of early heart failure from elec-
tronic health records (EHRs), showing that RNNs can
effectively harness the three-dimensional nature of EHR
data to predict health changes more accurately [7]; (b)
deep learning methods, utilizing the entire raw EHR
including temporal data formatted with Fast Health-
care Interoperability Resources (FHIR), can accurately
predict multiple medical events across different centers
without site-specific data harmonization [19].

By processing the EHR data, the latter method out-
performs traditional models in predicting in-hospital
mortality, readmission rates, length of stay, and dis-
charge diagnoses, validated by over 46 billion data points
from 216,221 hospitalizations. However, these algorithms,
which deal with complex three-dimensional data, are
computationally expensive and require more efficient
processing techniques to ensure timely diagnosis for a
vast number of patients and to manage the influx of
data effectively.

Decision tree methods, like gradient boosting and
random forests, have gained attention for their rapid
capabilities in capturing patterns and processing large
datasets to predict health outcomes from EHRs, with
significant advancements reported in recent research.
These methods, such as random forests and gradient
boosting, are favored for their ability to improve pre-
diction stability and reduce the variance of the models,
which is crucial in the medical field where prediction
reliability can significantly impact patient outcomes.
These methods are particularly adept at handling di-
verse and imbalanced datasets common in healthcare,
providing robustness against overfitting which is often
a challenge with deep learning models [I8]. Moreover,
random forests and gradient boosting demonstrated their
effectiveness in interpreting complex interactions within
EHR data, where permutation tests enhanced the clin-
ical relevance of the predictions [5]. Additionally, they
are adept at handling diverse and imbalanced datasets
common in healthcare, providing robustness against over-
fitting — a frequent challenge with deep learning mod-
els. XGBoost effectively integrates different types of de-
cision trees to harness their strengths, leading to im-
proved performance on complex tasks such as disease
prediction and patient management. For instance, XG-
Boost has been shown to outperform traditional mod-
els in cardiovascular risk prediction, achieving notable

improvements in predictive accuracy and increasing the
area under the curve (AUC) compared to previous mod-
els [20]. Notably, a study demonstrates that popular
deep learning models for disease prediction are not mean-
ingfully better than simpler, more interpretable classi-
fiers such as XGBoost [8]. However, the decision tree
methods (including XGBoost) normally ignored the tem-
poral references in the dataset, which was expected
since, unlike deep learning, decision tree methods can-
not take in temporal references.

To address the challenge of incorporating tempo-
ral information into the XGBoost model while avoiding
the high computational demands of deep learning, we
propose a preprocessing strategy that transforms tradi-
tional three-dimensional data into a more manageable
two-dimensional tabular format. This method allows
for the inclusion of temporal references in XGBoost
without the significant time and resource requirements
typically associated with deep learning methods. The
transformation is executed by segmenting the contin-
uous timeline of data into fixed-duration windows and
cumulating each window into a single record, thereby
preserving essential temporal characteristics while en-
abling the data to be formatted into a tabular structure.
This structured method retains key time-dependent fea-
tures within each window, facilitating the application of
2D /tabular machine learning algorithms that are not
inherently designed to process longitudinal data. This
transformation allows the use of two-dimensional ma-
chine learning algorithms like XGBoost, which are de-
signed for 2D datasets and offer a faster, less resource-
intensive alternative to models requiring 3D data, such
as neural networks or Long Short-Term Memory (LSTM).
The predictive probabilities generated by XGBoost for
each window are subsequently used as inputs for an
LSTM model. This strategy enhances overall computa-
tional efficiency—both in terms of processing time and
memory usage—more effectively than directly applying
LSTM on raw data while still leveraging temporal in-
formation.

By comparing the performance of traditional LSTM
models with an adapted 2D approach on a synthetic
dataset of patient records, we can explore whether sim-
plifying data representation from complex 3D formats
into less complex 2D tabular formats enhances predic-
tive capabilities. This adaptation involves using one-hot
encoding to convert the original multidimensional data
into a 2D format, facilitating the application of ma-
chine learning algorithms traditionally not suited for
multi-dimensional data. Our study investigates if this
transformation maintains, improves, or reduces the ef-
ficiency and accuracy of disease prediction, potentially
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offering a more streamlined method for handling exten-
sive healthcare datasets.

Preliminary results indicate that the tabular dataset
method using standalone XGBoost achieves a promis-
ing balance between accuracy (F1 score of 0.52) and
computational efficiency. While the standalone LSTM
model preserves the dataset’s temporal dynamics, its
slow processing rate poses significant limitations. Our

hybrid XGBoost-LSTM method, which captures extended

health information over staggered time windows, shows
potential (F1 score of 0.49), though it requires further
optimization to enhance predictive performance.

In our study, the application of a moving time win-
dow to analyze patient records, inspired by method-
ologies employed in intensive care unit (ICU) settings,
demonstrated limitations when scaled to a larger and
more varied dataset. The methodology presented by
Tsiklidis [23] successfully applies time-series classifica-
tion using machine learning to predict patient risks in
ICU settings, utilizing both static and dynamic pa-
tient information and shows high predictive accuracy
in a controlled environment with specific trauma pa-
tient types. However, when adapting a similar strat-
egy of staggering records into several time windows to
our more extensive dataset, which included various pa-
tient interactions beyond the ICU, the model’s perfor-
mance declined. This suggests a potential scalability
and adaptability limitation of the time-window method
when applied to datasets with greater complexity, vari-
ability, and sparsity. The F1 score of 0.49 for the pa-
tient window analysis, compared to 0.52 for the XG-
Boost model without temporal segmentation, indicates
that the time-window method may be less effective in
contexts outside the ICU where data uniformity and
patient conditions are less controlled. This highlights
the need for more robust machine learning frameworks
that can handle larger, more diverse datasets without
compromising the predictive accuracy critical for effec-
tive healthcare decision-making.

These findings underscore the feasibility of using 2D
models to effectively replace more complex 3D models,
potentially leading to broader application and faster
implementation in clinical settings, thereby enhancing
the ability to provide timely and accurate patient care.
By simplifying the data structure, we can achieve com-
parable or even superior predictive accuracy with sig-
nificantly reduced computational resources.

2 Related Work

The exploration of machine learning techniques in the
management of longitudinal EHRs has become a fo-
cal point in medical informatics research. The complex,

multidimensional nature of this data poses unique chal-
lenges, which various studies have addressed through
innovative approaches.

Longitudinal or three-dimensional data in health-
care typically includes temporal dynamics essential for
understanding patient trajectories and outcomes. Tra-
ditional methods often struggle with this complexity,
but recent advances have shown significant promise. For
instance, RNNs have been demonstrated to be effec-
tive in using longitudinal EHRs for early detection of
heart failure, highlighting the importance of capturing
temporal patterns in health data [7]. Similarly, compre-
hensive deep-learning approaches have been employed
to process raw EHR sequences, including time-stamped
entries, to predict various clinical events across mul-
tiple centers [19]. These studies underline the poten-
tial of deep learning techniques in managing and ex-
tracting value from complex longitudinal datasets, dis-
cussing the adaptability of LSTM networks to integrate
and learn from diverse data types present in EHRs, and
emphasizing their potential in predictive modeling and
patient management.

A review of LSTM networks for predicting life ex-
pectancy using electronic medical records highlighted
the strength of LSTM in handling variable-length and

irregularly sampled data, common characteristics of EHRs [3].

Despite LSTMSs’ ability to model complex temporal re-
lationships, challenges such as computational demand
and handling of missing data remain significant hur-
dles. Further, a study proposed a model integrating an
LSTM-based autoencoder with dense weighted small
spheres and large margins (LSTMAE-DWSSLM) for
classifying imbalanced time series data, demonstrating
the effectiveness of LSTM autoencoders in learning tem-
porally dependent feature representations from unla-
beled data [13].

A survey evaluated different machine learning strate-
gies, including decision trees, SVMs, and ensemble meth-
ods like XGBoost, for their efficacy in interpreting EHR
data [12]. While not exclusively focusing on LSTM, this
survey provided critical insights into the trade-offs be-
tween model complexity and interpretability, a crucial
consideration when employing models like XGBoost in
healthcare. In terms of integrating machine learning
with EHR systems, another survey reviewed deep learn-
ing techniques for predictive modeling [21]. The find-
ings highlighted the integration challenges and the po-
tential of deep learning to transform predictive models
in healthcare, also discussing the emergence of hybrid
models that aim to combine the strengths of various
machine learning techniques to improve performance
and manageability. Another study utilized a targeted
learning approach with daily EHR data, emphasizing
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the impact of data granularity on inference accuracy
in healthcare predictions [22]. This study explored how
different coarsening intervals could affect outcomes, of-
fering a novel perspective on handling large-scale health
data with machine learning tools like XGBoost.

In the realm of EHRs, the adaptation of machine
learning models to predict health outcomes from tab-
ular data has shown considerable promise. Specifically,
proficient application of non-neural network machine-
learning techniques has been illustrated to tackle the
challenges posed by COVID-19 health outcome predic-
tions using longitudinal EHR data [9]. Techniques such
as feature vector representation and ANOVA for initial
feature screening were utilized to achieve high predic-
tive accuracy. This study employed models like the Gra-
dient Boosting Machine, AdaBoost, Random Forest,
and K-Nearest Neighbor to create an ensemble learning
framework that robustly predicted various health out-
comes. These models processed 2D tabular data derived
from synthetic veteran EHRs, demonstrating their ef-
fectiveness in handling features encoded from a wide
range of medical conditions and interventions.

An XGBoost-based model enhanced with novel time-
dependent features was developed to predict sepsis in
ICU patients [I5]. This study leverages the strength
of XGBoost, an ensemble learning method known for
its high performance and efficiency in handling large
datasets with complex feature interactions. The incor-
poration of time-dependent features into the XGBoost
framework allows the model to dynamically adjust to
changes in a patient’s physiological state, providing a
real-time risk assessment of sepsis onset. Moreover, a
supervised deep learning model was introduced for clus-
tering EHR data, focusing on identifying clinically mean-
ingful phenotypes for both outcome prediction and pa-
tient trajectory analysis [I]. This study showcased the
potential of advanced clustering techniques and feature-
time attention mechanisms to enhance the interpretabil-
ity and effectiveness of EHR predictions.

The potential of knowledge distillation with XG-
Boost for ICU mortality prediction was investigated,
blending deep learning insights with XGBoost’s effi-
ciency to enhance both predictive power and explain-
ability [I4]. This work underscores the emerging trend
of hybrid models that seek to leverage the strengths
of both deep learning and traditional machine learning
techniques. The research also proposed an XGBoost-
based model enhanced with novel time-dependent fea-
tures for dynamic prediction in ICU settings. Their ap-
proach effectively incorporates temporal dynamics into
the model, significantly improving the prediction accu-
racy for sepsis.

While 3D models capture the full scope of data tem-
poralities, they are computationally intensive. 2D mod-
els, although less demanding, often overlook the tempo-
ral aspect, which can be crucial for accurate predictions.
The challenge lies in balancing computational efficiency
with predictive accuracy. Deep ensemble learning ap-
proaches in healthcare suggest that combining multiple
models might offer a solution to leverage strengths and
mitigate weaknesses of both data types [I8]. Addition-
ally, ensemble deep learning for biomedical time series
classification provides insights into how ensemble meth-
ods can be tailored for time-sensitive data, potentially
offering a pathway to integrate 2D efficiency with 3D
data richness [11].

A recent comparative study on machine learning
and deep learning approaches for EHR data extensively
covered the performance of LSTM against other models
like GRUs and XGBoost [2]. Their findings provide a
useful benchmark for understanding the conditions un-
der which each model excels and offer guidance for re-
searchers choosing between these models based on the
specific needs of their datasets. While they provided
insights into the comparative performance of LSTMs,
GRUs, and XGBoost, the literature still lacks compre-
hensive surveys that juxtapose these models in hybrid
settings specifically tailored for longitudinal EHR man-
agement. This gap underscores the need for more de-
tailed comparative studies and evaluations of hybrid
models.

This review of related work indicates robust interest
and ongoing research into the use of LSTM, XGBoost,
and their integration into healthcare data. While stud-
ies demonstrate LSTM’s effectiveness in capturing tem-
poral dependencies and XGBoost’s performance with
structured data, a gap remains in comprehensive com-
parative studies and hybrid model evaluations. Existing
research often focuses on short-term, dense datasets like
those from ICU settings, overlooking more extensive,
sparse, and lifelong patient records. These datasets, while
valuable, do not encompass the broader and sparser
longitudinal records found in lifelong healthcare data.
Our research aims to fill this gap by comparing LSTM,
XGBoost, and hybrid models in handling longitudinal
EHR data. By examining these models in real-world,
long-term datasets, we aim to provide insights into their
scalability, efficiency, and predictive accuracy, offering
a balanced solution that leverages the strengths of both
approaches for more effective and timely healthcare in-
terventions.
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3 Materials & Methods
3.1 Dataset Description

The study utilizes the Synthea™ Novel coronavirus (C-
OVID-19) synthetic dataset. This dataset comprises lon-
gitudinal electronic health records (EHRs) of 124,150
synthetic patients, simulating the progression and treat-
ment of COVID-19 from March through May 2020.
In this study, we focus on a subset labeled Injury
of heart involving 18,177 hospitalized patients. The
dataset features detailed event-based patient records,
allowing for the investigation of disease progression over
time [25].

Each patient record contains multiple data points
over time, categorized into various health-related events
such as medical history, demographic information, and
clinical events. For instance, a single patient’s record
contains demographic details such as birth year, age,
gender, race, and ethnicity. It also includes clinical events
like medication administration, procedures, care plans,
and vital signs and lab results observations. Each event
is precisely timestamped and coded, providing a de-
tailed chronology of the patient’s health history. The
data is organized into several key components:

1. Event Timestamps: Each event is timestamped, in-
dicating the exact date and time when the event
occurred. This allows for precise tracking of the se-
quence and timing of events throughout the patient’s
medical history.

2. Temporal Information: The dataset includes fields
indicating the number of days since the patient’s
first recorded event (days_fore) and the number
of days before the current date (days_back). This
helps in understanding the temporal context of each
event relative to the patient’s entire medical history.

3. Demographic Information: The dataset captures es-
sential demographic attributes such as birth year,
age, gender, race, ethnicity, and county. These at-
tributes provide context about the patient’s back-
ground and are crucial for analyzing health dispar-
ities and outcomes.

4. Clinical Events: A wide range of clinical events are
recorded, including:

— Medications: Information on medication admin-
istrations, including the specific drug codes and
names.

— Allergies: Records of any allergies the patient
has, along with the corresponding codes.

— Procedures: Details of medical procedures un-
dergone by the patient, identified by procedure
codes.

— Care Plans: Records of care plans established for
the patient’s treatment.

— Immunizations: Data on immunizations received,
including the types and dates.

— Conditions: Diagnosed medical conditions, iden-
tified by condition codes.

5. Observations: The dataset includes both categorical
and numerical observations related to the patient’s
health. Categorical observations might consist of in-
formation such as smoking status, while numerical
observations capture vital signs and lab results, such
as blood pressure, heart rate, and various lab test
values (Table [I]).

3.2 Predicting Heart Injury

Our experimental setup consists of three distinct meth-
ods to predict health outcomes from patient records
using machine-learning techniques that leverage both
tabular and longitudinal data formats. We aim to eval-
uate the effectiveness and efficiency of each method in
handling longitudinal health data for predicting a spe-
cific health condition, namely Injury of heart.

3.2.1 Tabular Dataset with XGBoost

This method utilized a 2D tabular format for the dataset,
focusing on demographic information and binary or con-
tinuous health event indicators. The data were prepared
using one-hot encoding, and the XGBoost model was
used for classification.

Methodology for Data Preparation

We apply one-hot encoding to convert the original
multidimensional data into a 2D format. The dataset
is pre-processed to create a structured tabular format.
Each health-related event within the patient’s history is
converted into a distinct feature. Binary indicators are
assigned to these features: “1” if the event occurred at
least once within the observation window for a patient,
and “0” otherwise. This binary transformation allows
for direct utilization of categorical data within the XG-
Boost framework.

For non-categorical features, such as physiological
measurements or lab results that are captured multiple
times, we aggregate the data to include the average,
minimum, and maximum values recorded during the
observation period. These statistical summaries provide
a comprehensive representation of the patient’s condi-
tion over time and are included in the dataset as sepa-
rate features (Figure [1]).

The input data to the model is a two-dimensional
tabular dataset. Each row represents a single patient,
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Table 1: Example of One Patient Records

Event When Days Fore Days Back Head Name Rela Name Tail Name
event_when days_fore days_back head_name rela_name tail_name
3/13/69 0:00 0 18624 0abbf153-7241 rBirthYear 1969
3/13/69 0:00 0 18624 0abbf153-7241 vAge 53.8
3/13/69 0:00 0 18624 0abbf153-7241 rGender female
3/13/69 0:00 0 18624 0abbf153-7241 rRace white
3/13/69 0:00 0 18624 0abbf153-7241 rEthnicity nonhispanic
3/13/69 0:00 0 18624 0abbf153-7241 rMaritalStatus married
3/13/69 0:00 0 18624 0abbf153-7241 rCounty Middlesex County
5/25/00 0:00 11396 7228 0abbf153-7241 rCondition 162864005
12/19/13 0:00 16352 2272 0abbf153-7241 rCondition 230690007
11/25/18 0:00 18154 470 0abbf153-7241 rMedication 1000126
3/13/19 0:00 18262 362 0abbf153-7241  vObservation QOLS 1
3/13/19 0:00 18262 362 0abbf153-7241  vObservation QALY 48.9
3/13/19 0:00 18262 362 0abbf153-7241  vObservation DALY 0.1
3/14/19 0:00 18263 361 0abbf153-7241 rCondition 68496003
6/6/19 0:00 18347 277 0abbf153-7241 rProcedure 76601001
9/5/19 0:00 18438 186 0abbf153-7241 rProcedure 76601001
11/20/19 0:00 18514 110 0abbf153-7241 rMedication 1000126
3/9/20 0:00 18624 0 0abbf153-7241 rCareplanReason 840544004
3/9/20 0:00 18624 0 0abbf153-7241 rCareplanReason 840539006
3/9/20 0:00 18624 0 0abbf153-7241 rCareplan 736376001
3/9/20 0:00 18624 0 0abbf153-7241 rCareplan 736376001
3/9/20 0:00 18624 0 0abbf153-7241 rCondition 36955009
3/9/20 0:00 18624 0 0abbf153-7241 rCondition 840544004
3/9/20 0:00 18624 0 0abbf153-7241 rCondition 386661006
3/9/20 0:00 18624 0 0abbf153-7241 rCondition 84229001
3/9/20 0:00 18624 0 0abbf153-7241 rCondition 840544004
3/9/20 0:00 18624 0 0abbf153-7241 rProcedureReason 840544004
3/9/20 0:00 18624 0 0abbf153-7241 rProcedure 261352009
3/9/20 0:00 18624 0 0abbf153-7241  rObservation 80383-3 Not_ detected
3/9/20 0:00 18624 0 0abbf153-7241 rObservation 80382-5 Not detected
3/9/20 0:00 18624 0 0abbf153-7241  rObservation 94531-1 Detected
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 8462-4 86
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 8480-6 107
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 8867-4 129.9
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 9279-1 29.9
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 2708-6 78.8
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 29463-7 84.6
3/9/20 0:00 18624 0 0abbf153-7241  vObservation 8310-5 38.5

and each column represents a specific feature derived
from the patient’s records, such as demographic infor-
mation and health events, converted into binary indi-
cators or aggregated statistics (Table .

Predictive Modeling Techniques

The predictive model is constructed using XGBoost,
a decision-tree-based ensemble machine-learning algo-
rithm that uses a gradient-boosting framework. The
model is specifically tuned for the binary classification
task of predicting the occurrence of Injury of Heart,
identified by the label label_card_86175003_ih.

Model Training and Evaluation

1. Model Initialization and Training: We initialize
the XGBoost classifier with varying tree depths, ex-
ploring depths from 5 to 30 to determine the optimal
complexity of the model. Each model configuration
is trained using the training subset of the data.

2. Threshold Optimization: For each model con-
figuration, the predicted probabilities for the tuning
set are used to determine the optimal threshold for
converting probabilities to binary predictions. This
threshold is selected to maximize the F1 score, bal-
ancing the trade-off between precision and recall.

3. Model Selection: The model yielding the high-
est F1 score on the tuning set is selected as the
best model. This process involves comparing the F1
scores across different tree depths and selecting the
depth and corresponding threshold that results in
the highest F1 score.

4. Final Model Performance: The final selected
model is evaluated on the test dataset to assess its
performance. This evaluation includes calculating
the F1 score and generating a confusion matrix.
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Table 2: Example of All Patient Records in One Table after One-Hot Encoding (One Patient Each Row)

gender_  county_ condition_ medication_ procedure_ observation_ observation_
patient birth_yr male norfolk 230690007 1000126 766601001 qols_min qaly_min
0abbf153-7241 1969 0.0 1.0 1.0 1.0 1.0 1.0 48.9
000edc09-fcfa 1976 0.0 0.0 0.0 0.0 0.0 - -

Original Longitudinal Data
(Time-Series Data of Patient Events)

Feature Generation
(Converting events to binary indicators)

Aggregate Measurements
(Calculating avg, min, and max values)

Y
One-Hot Encoding
(Applying one-hot encoding to categorical data)

Merge Data
(Combining all features into a single dataframe)

Final Tabular Format
(Each row per patient, columns for features)

Fig. 1: Preprocessing Pipeline - Converting Longitudi-
nal Data to Tabular Data

3.2.2 Time Series Dataset with LSTM

In This method, we aim to leverage the temporal char-
acteristics of the data through a Long Short-Term Mem-
ory (LSTM) network. The process involves converting
each patient’s sequential data into a series of embedded
vectors, allowing the LSTM to process and learn from
the evolving patient health data over time.
Methodology for Data Preparation

— Sequence Construction: For each patient,
we process their data from individual files, construct-
ing sequences of temporal features from the patient
events. Each feature in the sequence represents a
combination of vectors of the rela_name (Table
and tail_type:tail_name (Table components,
embedded using the corresponding pre-trained vec-

tors (Table [3). These sequences are labeled based
on the presence or absence of the Injury of Heart
condition.

— Data Splitting: The data is then split into
training, validation, and test sets based on prede-
fined patient IDs, ensuring consistency across all
methods. We scale the features using a Standard-
Scaler to normalize the data, which improves the
convergence of the LSTM during training.

The input data for the model is a three-dimensional
time-series dataset. Each patient’s data is represented
as a sequence of temporal features embedded into vec-
tors, allowing the model to process and learn from the
evolving patient health data over time.

Model Training and Evaluation

— Building the Model: The LSTM model is
constructed with two bidirectional LSTM layers fol-
lowed by a Dense layer. The bidirectional LSTM lay-
ers allow the model to learn from both past and fu-
ture contexts of the sequence, enhancing the model’s
understanding of the temporal dynamics (Figure.

Input Layer
(batch_size=1000, max_sequence_length=4441, num_features=258)

Masking Layer
(Ignores padding zeros)
Bidirectional LSTM Layer 1
(64 units, returns sequences)
Bidirectional LSTM Layer 2
(32 units)

Dense Output Layer
(Sigmoid activation)

Fig. 2: LSTM Model Architecture

— Training and Evaluation: The model is trained

using binary cross-entropy loss and optimized with
the Adam optimizer. We evaluate the model using
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Table 3: Embedding Pre-Trained Vectors

(a) Relation Data

(b) Tail Data

relation 0 1 2 3 tail 0 1 2 3
rBirthYear -0.147 -0.511 0.092 0.303 BirthYear:1958 0.182 -0.071 -0.055 -0.200
rCareplan 0.147 -0.671 0.090 0.301 Careplan:698360004 -0.113  0.095 -0.056 -0.212
rCareplanReason  -0.254 -0.577 0.022 -0.183 Careplan:736285004 -0.101  0.094 -0.066 -0.243
rCondition -0.181 -0.856 0.070  0.452 -0.114  0.093 -0.055 -0.222

Careplan: 736376001

an F1 score metric to balance the trade-off between
precision and recall, which is crucial for the imbal-
anced nature of our binary classification task. The
training proceeds in steps, with regular evaluation of
the validation set to determine the optimal thresh-
old for binary classification based on predicted prob-
abilities.

— Threshold Optimization: At each training
step, we utilize precision-recall curves to find the op-
timal threshold for converting prediction probabili-
ties into binary predictions. This threshold is chosen
to maximize the F1 score on the validation set, en-
suring the best balance between false positives and
false negatives.

— Model Performance: The final trained model,
selected from the epoch with the highest F1 score
on the validation set, is evaluated on the test set
to assess its predictive performance. The evaluation
includes calculating the F1 score and generating a
confusion matrix to understand the model’s classi-
fication capabilities.

3.2.8 Patient Window Breakdown

This method aims to leverage staggered time windows
to capture a patient’s health information over time.
Each window represents a fixed-duration segment of pa-
tient events, allowing for more granular temporal pre-
diction. Multiple records for each patient are created
based on staggered time windows to capture detailed
health information over time. Each window’s data is
first processed using XGBoost to predict probabilities
of health outcomes, which are then used as inputs to
an LSTM model, forming a sequence-to-sequence pre-
diction framework.

Methodology for Data Preparation

Each patient’s record is transformed into a series
of windows, each representing a fixed duration of 1000
days. This windowing method helps structure the data
by summarizing the health events occurring within each
period, thereby maintaining the essential temporal dy-
namics while allowing for study using 2D data formats.

We pre-process the records in a manner similar to the
one-hot encoding process in the first method, convert-
ing event descriptions into binary indicators of occur-
rence within each window, including demographics and
health event occurrences (Figure [3]).

Original Longitudinal Data
(Time-Series Data of Patient Events)

Data Windowing
(Segmenting data into observation windows)

Feature Generation
(Converting events to binary indicators)

Aggregate Measurements
(Calculating avg, min, and max values)

One-Hot
(Applying one-hot encox

Encoding
ding to categorical data)

Merge Data
(Combining all features into a single dataframe)

Final Tabular Format
(Each row per window, columns for features)

Fig. 3: Preprocessing Pipeline - Converting Longitudi-
nal Data to Tabular Data (Multiple Time Windows)

— Window Construction: For each patient, we
divide their health records into time windows of
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1000 days. We construct these windows by extract-
ing the relevant events within each time window and
including demographic information (Table [4)).

— One-Hot Encoding: We transform the health
events into one-hot encoded features for each time
window. For categorical features, a binary indicator
of occurrence is used, while for numerical features,
we calculate the average, minimum, and maximum
values within the window.

— Data Splitting: The resulting data is split
into training, validation, and test sets based on pre-
defined patient IDs, ensuring consistency across all
methods and facilitating consistent evaluation across
different modeling techniques.

— Label Alignment: We align the patient la-
bels with the windowed data, replicating the label
for each patient’s corresponding windows. This en-
sures that each window receives the same label as
the patient’s overall diagnosis.

The input data for the model consists of staggered

Data Preparation
(Window Construction, One-Hot Encoding)

XGBoost Model
(Training on Windowed Data)

Feature Combination
(Predictions + Demographics + Statistics)

LSTM
(Sequential

Model
Prediction)

Model Training and Evaluation
(Binary Cross-Entropy, Adam Optimizer)

time windows for each patient. Each window is initially
represented in a two-dimensional tabular format for
XGBoost processing and then converted into sequences
for the LSTM model. This hybrid method captures de-
tailed temporal dynamics and facilitates sequential pre-
diction.

Threshold Optimization
(Optimal F1 Score Calculation)

Model Training and Evaluation (Figure

— Building the XGBoost Model: The XG-
Boost model is trained on the windowed data to
generate prediction probabilities for each window.
We optimize the maximum tree depth between 5
and 30 to achieve the best F1 score on the tuning
set. The best model is used to generate prediction
probabilities for the training, validation, and test
sets.

— Combining Predictions and Additional Fea-

tures: After the XGBoost training, we add demo-
graphic data, including gender, race, ethnicity,
maritalstatus, county, and statistical data such
as the number of medications, allergies, conditions,
procedures, care plans, and immunizations for each
time window, alongside the predicted probabilities
from the XGBoost model. The final features, includ-
ing the predictions and these additional attributes,
are then used as input for the LSTM model.

— Building the LSTM Model: The LSTM model

utilizes the prediction probabilities from the XG-
Boost model as input features, along with other rel-
evant features from the windowed data. The model
consists of two LSTM layers followed by a Dense
layer, enabling sequential prediction of the windowed
data (Figure [5).

Model Performance
(F1 Score, Confusion Matrix)

Fig. 4: Hybrid Predictive Model Workflow Combining
XGBoost and LSTM

— Training and Evaluation: The LSTM model
is trained using binary cross-entropy loss and opti-
mized with the Adam optimizer. We evaluate the
model using an F1 score metric to balance precision
and recall, which is crucial for the imbalanced na-
ture of our binary classification task. The training
proceeds in steps, with regular evaluation of the vali-
dation set to determine the optimal threshold for bi-
nary classification. The models are evaluated based
on their F1 score and computational efficiency. The
F1 score, a harmonic mean of precision and recall, is
particularly useful in the imbalanced datasets typi-
cal of medical event predictions. Computational ef-
ficiency is assessed by the time required to train and
predict using each model configuration.

— Threshold Optimization: At each training
step, we utilize precision-recall curves to find the op-
timal threshold for converting prediction probabili-
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Table 4: Example of All Patient Records in One Table after Dividing into Windows

days_ days_ gender_ condition_ medication_  observation_ observation_
patient birth_yr back fore male .. 230690007 1000126 qols_min qaly_min

0abbf153-7241

window 12 1969 7228.0 11396.0 0.0 e 0.0 0.0 - 48.9
0abbf153-7241

window 17 1969 2272.0  16352.0 0.0 . 0.0 1.0 0.0 -
0abbf153-7241

window 19 1969 0.0 18624.0 0.0 e 1.0 0.0 - -
00051dc6-38dc_

window 8 1998 0.0 7824.0 0.0 . - 0.0 0.0 -
000edc09-fcfa

window 10 1976 5840.0 9968.0 0.0 . - 0.0 0.0 -
000edc09-fcfa

window 11 1976 5098.0  10710.0 0.0 e - 0.0 0.0 -
ffaa918c-d035

window 7 1945 20597.0  6663.0 0.0 e - 0.0 0.0 -
ffb28c11-110c__

window 10 1985 2732.0 9996.0 1.0 e - 0.0 0.0 -
ffb28c11-110c

window 13 1985 0.0 12728.0 1.0 e - 0.0 0.0 -

ing the F1 score and generating a confusion matrix
to understand the model’s classification capabilities.

Input Layer
(XGBoost Probability Predictions for each window
+ Demographics + Statistics)
(batch_size=256, max_sequence_length=40, num_features=34)

Masking Layer
(Ignores padding zeros)
LSTM Layer 1
(64 units, refun sequences)

4 Results and Discussion

In this section, we present a detailed analysis of the per-

formance of three different machine learning methods

for predicting health outcomes from patient records.
The methods evaluated are:

1. XGBoost with Tabular Dataset: This method
uses a 2D tabular format of the dataset.

2. LSTM with Time Series Dataset: This method
leverages the temporal characteristics of the data
through a Long Short-Term Memory (LSTM) net-
work, converting each patient’s sequential data into
a series of embedded vectors.

3. Hybrid XGBoost then LSTM: This method com-
bines the strengths of XGBoost and LSTM, using
XGBoost to generate prediction probabilities for each

Fig. 5: Detailed LSTM Model Architecture window of data, which are then used as inputs for

an LSTM model.

Dense Layer
(Sigmoid Activation)

Output
(Prediction for each patient)

ties into binary predictions. This threshold is chosen =~ 4.1 Comparative Analysis
to maximize the F1 score on the validation set, en-
suring the best balance between false positives and ~ Table[5]provides a summary of the performance metrics

false negatives. for each method, including the F1 score, training time,
— Model Performance: The final trained model ~ best F1 score achieved, the optimal threshold for F1
is evaluated on the test set to assess its predic- score, and the F1 score if the data were balanced. Figure

tive performance. The evaluation includes calculat-  [f] visually depicts the F1 scores and run times for each
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method, supporting the comparison results presented
in Table 5l

F1 Scores and Run Times for Different Methods

0.6 1

151.42 seconds

39 minutes
34 seconds

207 hours
58 minutes
36 seconds

F1 Score

0.1+

N/A

Baseline XGBoost

LSTM Hybrid
Random Labels Tabular Dataset Time Series Dataset XGBoost then LSTM

Methods

Fig. 6: F1 Scores and Run Times for Different Methods

In evaluating the performance of our models, we in-
troduced a baseline using random labels. This baseline
serves as a control to demonstrate the performance im-
provement of our models over random predictions. The
baseline model randomly assigns labels to the data, pro-
viding a point of reference for assessing the effectiveness
of our machine-learning approaches. By comparing the
F1 scores of our models to the baseline, we can quanti-
tatively measure the extent to which our models outper-
form random guessing, thereby validating their predic-
tive capabilities. The F1 score of the baseline model is
0.0081, which is substantially lower than the F1 scores
of the XGBoost, LSTM, and hybrid methods. This com-
parison clearly demonstrates that our models are not
only functioning better than random chance but also
providing meaningful and accurate predictions.

The XGBoost model shows the highest F1 score
with the shortest training time, highlighting its effi-
ciency and effectiveness. In contrast, the LSTM model,
despite capturing temporal dependencies, has a signif-
icantly lower F1 score and the longest training time,
indicating high computational costs and overfitting is-
sues. The hybrid method improves over the standalone
LSTM model but still falls short of XGBoost’s perfor-
mance, both in terms of accuracy and computational
efficiency.

4.2 Method 1: XGBoost with Tabular Dataset

The XGBoost model demonstrates the highest F1 score
of 0.5199 and requires relatively low computational re-
sources, with a training time of 151.42 seconds. The

optimal tree depth is 19, achieving the best F1 score of
0.5542, as depicted in Figure [7}

Best F1 Score vs. Tree Depth

0.555

0.550

0.545 1

—&— Best F1 Score

—=- Best F1 Score at Depth 19

F1 Score

0.540

0.535 1

0.530

Tree Depth

Fig. 7: Method 1 - XGBoost Model Best F1 Score vs.
Tree Depth

XGBoost excels in this context due to several key
reasons:

— Efficiency in Handling Large Datasets: XG-
Boost is designed to handle large-scale datasets ef-
ficiently, making it well-suited for the extensive pa-
tient records in this study [6]. The model’s ability to
parallelize tree construction and optimize memory
usage contributes to its fast training time.

— Robustness Against Overfitting: The en-
semble nature of gradient boosting allows XGBoost
to capture complex patterns in the data while main-
taining robustness against overfitting. The model’s
regularization techniques, including L1 and L2 reg-
ularization, help prevent overfitting, which is crucial
for generalizing well on unseen data [17]. These tech-
niques help manage model complexity and improve
performance on large datasets by penalizing more
complex models, thereby enhancing their predictive
capabilities and stability.

— Effective Utilization of Categorical Fea-
tures: One-hot encoding transforms categorical fea-
tures into binary indicators, enabling XGBoost to
effectively utilize the diverse patient information.
This approach ensures that all relevant features are
incorporated into the model (even though it cannot
capture the temporal characteristic of the data), en-
hancing its predictive power.

— Feature Importance and Interpretability:
XGBoost provides insights into feature importance,
allowing for better interpretability of the model [6].
Understanding which features contribute most to
the predictions is valuable in the healthcare con-
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Table 5: Comparison of Different Methods

Training Time F1 Score if
Method F1 Score (seconds) Best F1 Score F1 Optimal Threshold Data is Balanced
Baseline Random Labels 0.0081 - - - 0.0159
XGBoost Tabular Dataset 0.5199 151.42 0.5542 0.0113 0.9415
LSTM Time Series Dataset 0.2781 748716.05 0.3017 0.0605 0.3622
Hybrid XGBoost then LSTM 0.4864 2374.59 0.5068 0.1850 0.8423

text, where interpretability is often as important as
accuracy.

4.3 Method 2: LSTM with Time Series Dataset

The LSTM model, designed to leverage the temporal
characteristics of the data, achieves an F1 score of 0.2781
with a best F1 score of 0.3017. However, the training
time is significantly higher, amounting to 748716.05 sec-
onds (approximately 8.66 days). The performance trend
is shown in Figure [§

Best F1 Score vs Epochs

0.301 —— BestF1 Score

Best F1 Score
o
[N
S

e
i
@

0 25 50 75 100 125 150 175 200
Epoch

Fig. 8: Method 2 - LSTM Model Best F1 Score vs.
Epochs

The LSTM model’s poor performance can be at-
tributed to several factors:

— High Computational Cost: LSTM models
are inherently complex and computationally inten-
sive. Training such models requires significant re-
sources and time, which is evident in the exception-
ally long training time observed in this study.

— Sensitivity to Data Quality: LSTM’s re-
liance on sequential data processing makes it sen-
sitive to the quality and continuity of the time se-
ries data. Any irregularities or noise in the data can
significantly impact the model’s performance. The
synthetic nature of the dataset and potential incon-
sistencies in the time series may hinder the LSTM’s
ability to learn effective patterns.

— Difficulty in Achieving Stable Performance:
The high variance observed in the F1 score over
epochs indicates challenges in achieving stable and
consistent performance. LSTM models often require
careful tuning of hyperparameters and a large amount
of high-quality data to perform well, which may not
be fully met in this study.

— Complexity of Capturing Long-Term De-
pendencies: While LSTM models are designed to
capture long-term dependencies, doing so effectively
requires a large and representative dataset. The com-
plexity of the model and the high dimensionality of
the data can lead to difficulties in learning mean-
ingful long-term patterns.

— Possibility of Overfitting: The training and
validation loss curves for the LSTM model, shown
in Figure [0 provide further insight into the model’s
performance. The training loss decreases steadily,
indicating that the model is learning and fitting well
with the training data. However, the validation loss
increases, suggesting that the model is starting to
overfit and indicating that the model is no longer
improving on the validation data and is instead be-
coming overly specialized to the training data. Over-
fitting occurs when the model captures noise and de-
tails specific to the training data, which negatively
impacts its performance on new, unseen data. This
is evident from the widening gap between the train-
ing and validation loss, highlighting the model’s re-
duced generalization capability. This trend under-
scores the challenges of using LSTM models with
high-dimensional and potentially noisy datasets, as
they can easily overfit without careful regularization
and sufficient data quality.

4.4 Method 3: Hybrid XGBoost then LSTM

The hybrid method achieves an F1 score of 0.4864, with
a best F1 score of 0.5068 and a training time of 2374.59
seconds. This method aims to combine the strengths
of both XGBoost and LSTM. Figure [I0] demonstrates
that the F1 score improves rapidly during the initial
epochs and stabilizes, maintaining a high level of per-
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Training vs Validation Loss

—— Train Loss
0.25 Val Loss

0.20

0.15 4

Loss

0.10 4

0.05 1

0.00 1

T T T T T T
0 25 50 75 100 125 150 175 200
Epoch

Fig. 9: Method 2 - LSTM Model Training vs Validation
Loss

formance throughout the remaining epochs. This indi-
cates that the hybrid method quickly learns to lever-
age the strengths of both models and then consistently
applies this knowledge. The consistency in performance
throughout the remaining epochs highlights the model’s
ability to generalize well to new data, reducing the like-
lihood of overfitting, which is a problem in Method 2
mentioned above.

Best F1 Score vs Epochs

— Best F1 Score

Best F1 Score

T T T T T T
0 10 20 30 40 50
Epoch

Fig. 10: Method 3 - LSTM Model of Hybrid Method
Best F1 Score vs. Epoch

The hybrid method, while improving performance
compared to using LSTM alone, does not surpass the
efficiency and accuracy achieved by the XGBoost model
with the tabular dataset. The potential reasons for this
are multifaceted:

— Integration Challenges: Combining two dif-
ferent models introduces additional complexity. Al-

though XGBoost effectively captures static patterns
in the tabular data, the subsequent LSTM model
struggles to leverage the temporal dynamics of the
already processed data. The integration of predic-
tion probabilities as inputs for the LSTM may lead
to information loss or redundancy. Specifically, the
predictions from XGBoost are aggregated results,
and while they provide a summary of static features,
they may not carry forward the intricate temporal
relationships necessary for the LSTM to function
optimally. This can result in a loss of detailed tem-
poral information that the LSTM needs to make
accurate predictions, thereby hindering its perfor-
mance.

— Overhead of Model Combination: The hy-
brid method involves multiple stages of data pro-
cessing and model training, leading to increased over-
head. This added complexity does not translate into
a significant performance gain, as the individual ad-
vantages of XGBoost and LSTM are not fully syn-
ergized. Each stage of the hybrid model requires
separate tuning, data preprocessing, and validation,
which collectively increases the computational bur-
den. Moreover, the intermediate data transforma-
tions and model handovers can introduce inefficien-
cies, further complicating the model training process
and negating potential performance benefits.

— Balancing Static and Temporal Informa-
tion: The hybrid method aims to balance the strengths
of capturing static features with XGBoost and tem-
poral dependencies with LSTM. However, the diffi-
culty in harmonizing these two aspects may limit the
overall effectiveness. The temporal dynamics cap-
tured by the LSTM may be overshadowed by the
static predictions from XGBoost, resulting in subop-
timal performance. Essentially, while XGBoost ex-
cels at capturing feature interactions in a static con-
text, it may dominate the hybrid model’s predic-
tions, leaving the temporal nuances that the LSTM
could capture underutilized. This imbalance can pre-
vent the hybrid model from fully capitalizing on the
temporal relationships in the data, leading to per-
formance that is less than optimal compared to the
pure XGBoost model.

— Computational Efficiency: While the hybrid
method is more computationally efficient than the
standalone LSTM model, it still requires more re-
sources than the XGBoost model alone. The added
computational cost does not yield proportional im-
provements in predictive performance.

The comparative analysis of XGBoost, LSTM, and
the hybrid method underscores the efficiency and accu-
racy of XGBoost when applied to a tabular dataset for
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predicting health outcomes from patient records. De-
spite the theoretical advantages of leveraging LSTM
for capturing temporal dependencies, the practical chal-
lenges of high computational costs, sensitivity to data
quality, and the risk of overfitting limit its effective-
ness in this study. The hybrid approach, while mit-
igating some of the drawbacks of standalone LSTM,
does not achieve the same level of performance as XG-
Boost due to integration complexities and computa-
tional overhead. Consequently, XGBoost remains the
preferred method in this context, offering a balanced
solution that maximizes predictive accuracy and com-
putational efficiency for longitudinal EHR data.

5 Conclusions

In this study, we evaluated three machine learning ap-
proaches for predicting health outcomes from longitudi-
nal patient records: (1) XGBoost with a tabular dataset,
(2) LSTM with a time series dataset, and (3) a hy-
brid XGBoost then LSTM approach. Our results indi-
cate that the XGBoost model with a tabular dataset
is the most effective approach, achieving an F1 score
of 0.5199 with relatively low computational resources.
This method demonstrated efficiency in handling large-
scale datasets, robustness against overfitting, effective
utilization of features, and better interpretability through
feature importance analysis.

The LSTM model, while designed to capture tem-
poral dependencies, showed a lower F1 score of 0.2781
and suffered from high computational costs, amount-
ing to approximately 8.66 days of training time. The
training and validation loss curves revealed significant
overfitting, indicating challenges in achieving stable and
consistent performance with high-dimensional and po-
tentially noisy datasets.

The hybrid approach, combining XGBoost and LSTM,

achieved an F1 score of 0.4864. Although it improved
performance compared to using LSTM alone, it did not
surpass the efficiency and accuracy of the standalone
XGBoost model. The integration of the two models in-
troduced additional complexity and overhead, limiting
the overall effectiveness of the hybrid approach.
Future work should focus on optimizing the hybrid
approach to better leverage the strengths of XGBoost
and the inherent temporal characteristics of the dataset.
This could involve developing advanced methods for
integrating temporal dynamics into XGBoost predic-
tions or exploring other model architectures that can
effectively combine static and temporal features. Specif-
ically, enhancing the interaction between XGBoost and
LSTM by developing more sophisticated data transfor-
mation techniques that preserve temporal information

could lead to better performance. Additionally, investi-
gating ways to directly incorporate temporal dependen-
cies within XGBoost itself might streamline the hybrid
approach.

Advanced preprocessing techniques should also be
a key area of focus. Techniques such as automated fea-
ture selection, which uses algorithms to select the most
relevant features automatically, and dimensionality re-
duction, which reduces the number of variables under
consideration, can significantly improve model perfor-
mance. These techniques can help in managing the high
dimensionality and complexity of longitudinal health
data, while still keeping as much data as possible. More-
over, incorporating domain-specific knowledge into pre-
processing can improve data quality. For instance, using
medical ontologies to refine feature selection could lead
to more clinically relevant models.

Exploring alternative integration strategies, like com-
bining XGBoost features with raw inputs before feeding
them into the LSTM, may better capture feature inter-
actions and temporal dependencies. This could involve
creating a hybrid architecture where the outputs of XG-
Boost are used as additional features rather than the
sole inputs to the LSTM, allowing the LSTM to lever-
age both the processed outputs and the raw temporal
data.

Moreover, attention mechanisms and transformer mod-
els present promising avenues for future research. At-
tention mechanisms allow models to focus on important
parts of the input sequence, improving the capture of
relevant temporal dynamics. Transformers, which use
self-attention mechanisms to weigh the importance of
different parts of the input data, can be particularly ef-
fective in handling sequential data and capturing long-
range dependencies. These techniques could provide more
sophisticated ways to integrate temporal information,
maintain computational efficiency, and improve predic-
tive performance. Extensive hyperparameter tuning us-
ing automated optimization techniques, such as Bayesian
optimization or grid search, can also be used to find the
best configurations for both XGBoost and LSTM, en-
suring optimal performance.

Evaluating these approaches on larger and more di-
verse datasets will be crucial to generalizing the findings
and ensuring robustness across different healthcare ap-
plications. This could involve using real-world clinical
datasets from various healthcare institutions to validate
the models’ effectiveness and adaptability. Overall, the
results of this study highlight the potential of machine
learning techniques to improve health outcome predic-
tions from patient records. By addressing the identified
limitations and exploring new methodologies, future re-
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search can continue to advance the field and contribute
to more accurate and efficient healthcare solutions.
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